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Systematic Characterization of the Spectrum
of Unilateral Finline

C.A. OLLEY AND T. E. ROZZI, SENIOR MEMBER, IEEE

Abstract —The fundamental mode of fhdine is well documented. A

sufficiently complete knowledge of the higher mode spectrum, however, is

necessary for the treatment of dkcontinuities. T’fds’ paper is concerned

with a rigorous approach to the problem of the spectrum of unilateral

finline on the basis of a variational solution in the space domain and

transverse equivalent network cousideratious. We call this method trans-

verse resonance diffraction. Having satisfied the correct edge condition a

priori the analysis produces highly accurate dispersion characteristics

calculated at each “spot frequency” for the fundamental and bigher order

modes with matrices of very low order. By exploiting the quasi-

analytical character of the model, it is possible to derive a systematic and

complete characterization of the spectrum in terms of “mode families.”

Moreover, simple-to-use wide-band approximations to the dispersion char-

acteristics are also obtained which are suitable for evacuation ‘by a desktop

calculator.

I. INTRODUCTION

w ITH THE INCREASED DEMAND for millimeter

systems, E-plane structures such as firdine have be-

come established for use in millimeter-wave integrated

circuits. Originally proposed by Meier [1], finline avoids

unnecessary miniaturization at the millimeter frequencies

while offering the potential for low-cost batch production

and a degree of compatibility y with active devices. Finline

may be regarded as a form of planar ridged waveguide;

this was recognized by Saad and Begemann [2], who pro-

duced approximate solutions for the fundamental mode

using a simple equivalent circuit. Although the first fully

rigorous solution was given earlier by Hofmann [3], this

was time consuming and suffered from relative conver-

gence problems. Saad and Schunemann [4] presented an

analysis in terms of an equivalent set of rectangular wave-

guides to obtain a first-order design theory for simple

finline filter sections, while Shih and Hoefer [5] applied the

general TLM method with a view to obtaining the equiv-

alent fin susceptance for a transverse resonance solution of

the cutoff.

However, since 1979, the spectral-domain technique de-

veloped by Itoh and subsequently applied to finline [6] has

been the accepted analysis. Subsequent papers [7], [8] have

used this analysis to present results on the general proper-

ties of finline, including an assessment of loss, and have [9]

extended the method to more general unilateral structures.
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Work has since been directed at the effect of finite fin

thickness and substrate holding grooves using more gen-

eral analyses, e.g., Beyer [10] and Wahldieck [11]. But, with

certain exceptions [5], [6], most work has been directed at

the fundamental mode. In addition, considerable computa-

tional effort is required even with the spectral-domain

analysis, and this has led other authors to adopt approxi-

mate techniques, such as curve fitting (Pramanick and

Bhartia [12]), and modified transverse resonance (Saad and

Schiinemann [13]). This motivates work towards rigorous

approaches that yield simple and easy-to-use equivalent

circuits.

Actual finline components, however, involve discontinu-

ities. The solution of discontinuity y problems, in turn, in-

volves field matching with higher order modes. Therefore,

in order for work to proceed on the analysis of finline

discontinuities, such as in [15] -[16], a deeper understand-

ing of the higher order modes is required. The identifica-

tion of inductive and capacitive modes by Omar and

Schunemann [17] is useful. Although LSE and LSM decou-

pling has been previously employed in the spectral-domain

work, its significance was not fully appreciated.

We present an electromagnetic treatment which is rigor-

ous but results in easy-to-use equivalent networks for the

general solution and for cutoffs of various types of higher

order mode. It also provides an accurate but simplified

dispersion relation. The method operates in the space

domain making use of transverse circuits and taking into

explicit account the fins and their associated edge condi-

tions. Restricting ourselves to the idealized unilateral finline

structure as given by Fig. 1, the thickness of the fin

metallization is ignored, as are any means of supporting

the substrate. The transverse Green’s admittances as seen

at the fin aperture are obtained in the space domain; use is

then made of the mapping, originally introduced by

Schwinger [18], for the analysis of capacitive irises in

waveguide, in order to introduce basis functions which

implicitly satisfy the correct edge conditions. This judi-

cious choice of basis yields rapid convergence with an

exceptionally low order of required expansion.

With a view to characterizing the spectrum and obtain-

ing simple but accurate broad-band equivalent circuits, we
recognize two fundamental properties of hybrid modes in

closed waveguide.

1) At cutoff, TE and TM contributions are decoupled,

so that the Green’s admittance becomes block diagonal

and the resulting dispersion equation depends only on the
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Fig. 1. Idealized unilateral finline.

cutoff wavenumber kO = kC rather than on k and the

propagation constant /3. This leads to a systematic and

quasi-analytical determination of the cutoff wavenumbers

kc. A natural grouping of modes in “mode families”

ensues, each family being characterized by a distinct

quasi-static field in the gap.

2) Once the cutoff wavenumber of a mode is found, the

propagation constant near cutoff must be expressible as an

odd Laurent series of ~~ [19]. This realization leads

naturally to an approximation for the dispersion equation,

the simplest form of which is of the type

with a real q >0 virtually independent of frequency. This

approximation we prefer to use over the “effective dielec-

tric constant,” which is still considerably frequency depen-

dent.

11. RIGOROUS ANALYSIS

The fields in finline will be described by y-directed

Hertzian

Thus

where

vector potentials coupled together in some way.

E=– jtipV~II~+k2fl,+VV.lT, (1)

H=k211k+VV.17k+ jaev X~e (2)

llh = +k(x, y)e-JB’ (3)

IIe= +,(x, y)e-@ (4)

and propagation has been assumed in the z-direction with

phase coefficient ~.

For the analysis, the y-dependence of functions $(x, y)

is expressed in terms of the TE, TM (to y) eigenfunctions

of slab-loaded waveguide x ~~( y ), x ~~( y). These are nor-
malized so that x.(O) = 1

+h(x, Y) = 5 ~h@h(~)xhn(Y) (5a)
~=()

+=(x,-y) = ~ UJ#le,(x)xen(y) (5b)
~=1

where

{

2 n7r
@h.(x) = — Cos —x, n = 2,4,6,. ...

a a

a
——

2
~ (6a)<x<—

r1
. —— n=()

a’

{

2 nr
@en(x) = — sin —x.

a a
(6b)

Moreover, at y = O, it is possible to express four indepen-

dent x and z field components in terms of the set{ +h.(~)}

only, by means of the choice below:

‘EX(x, o) = g ETn@hn(x) (7)
~=()

t28
;~Ez(x, o) = f E=nrjhn(x) (8)

~=1

:J%(x,o)dx= ~ ‘mf+hn(x)
~=1

(9)

Hz(x, o) = : Hznc+hn(x). (lo)
~=1

An additional advantage of using modified versions of E,

and HX, namely, to produce proper convergence of the

Green’s functions, is discussed further in Appendix I.

The as yet unknown coefficients may be obtained from

the modal amplitudes of transversely propagating pure TE

and TM modes in the regions left and right of y = O using

a now classical axis rotation due to Itoh [20]. The hybrid

field is thus expressed in terms of voltages and currents

upon TE and TM transmission lines. Eliminating voltages

and currents leads to a direct relationship between the E

and H fields. For instance, to the right of y = O

where

r

[

=NTn-I ‘nR 0
0 g.R [1ETnN ~x” (11)

Zn

:0s Tn
10

T.=
[ 1[ ]–jsinr~ N

– j sin ~. COS Tn o~

n

‘in’n=&’
Here, h .R9 gnR are the TM and TE admittances, rwec-

tively, seen by the n th mode looking right of y = O, given

by

h.R=J; coth knyl
n.v

k
gnR = 2 coth kn ,1

jap

where

‘ny=w-

From the above, by superposition, a relationship be-

tween the total fields left and right of the fin aperture may

be formed. Thus, at y = O for the right-hand side of the
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fin, we have in operator form,

[Zxl=[za“k$l“2)
It is noted that no distinction between fields right and left

of the aperture need be made inasmuch as the fields are

continuous there. On the left-hand side, we have

[-:~~+-[: 2“[AI ’13)
The sign difference on the left-hand sides of (12) and (13)

is noted, This is a consequence of the opposite orientation

of the Poynting vector at the two sides of the aperture.

The operator notation is defined as follows. For exam-

ple,

– IIZIEZ=O = f$EX= ~w/2 Yfl(x,x’)EX(x’, O)dx’
—w/2

where Yl~(x, x’), etc., are defined in Appendix I. It is

noted here that ill denotes the integral operator whose

kernel is given by Yll(x, x’). The matrix representation of

Yll in terms of a discrete basis will be indicated below by

Yll, and elementwise by (Yll)nzn.

We now apply the continuity of fields at the fin aper-

ture. By adding (12) and (13), one derives the following

system of integral equations for EX and (a/ax )Ezeinvolv-

ingethe total cross-sectional admittance operators Yll = ~1~

+ Yl~, etc:

[: :I”[:ld=o ’14)
where the corresponding Green’s admittance functions are

of the form

Yll(x, x’) = s Ylln%n(x)+kn(x’)
~=o

Y12(X, X’) = 5 Y1’n+hn(x)%.(x’)
~=1

Y21(X, X’) = –Y12(X, X’)

Y22(x, x’)= ~ y22m@kn(x)@hn(x’)
~=1

with Y1l., etc., given in Appendix I.
In order to solve (14) by the Ritz-Galerkin method in

real space, we expand the fields onto the orthonormal

basis { ~~ } which satisfies the r- li’ singularity at the fin

edges, as follows:

[

A suitable

introduced

EX(X)

1 [1

Xm
ail ‘= ? fro(e).

—E=(x) do ..O Z.
(15)

—
~ ax

choice for the functions ~~ is that originally

by Schwinger for the analysis of capacitive

irises in waveguide [18] (see Appendix II).

The Schwinger functions result from the conformal

mapping of the static fields between a parallel-plane wave-

guide and a waveguide with fin. Neglecting the slight

perturbing effect of the dielectric, the quasi-static behavior

of the fields in the fin gap is described exactly in terms of

the above functions. The functions thus lend themselves as

an ideal basis for use in a variational solution for finline.

The perturbations due to the presence of the dielectric

substrate and the proximity of the end walls, however, do

not allow an exact solution directly from the mapping.

In the fin gap, we can also expand each ~~~ in terms of

fm,i.e.,

+hn = ; ‘nmf.. (16)
-.—.

The coefficients P~n are defined in Appendix 11, By appli-

cation of (15) and (16) in (14), the latter is therefore

transformed into a matrix equation

[221[2=0 (17)

where

(Yll)m,k= f Yllnpmnpkn
~=()

(Y1’)wk = f Y1’nl’nlnpkn
~=1

(Y’l)mk = -(yI’)mk

(y2Jmk = 5 Y22J’J’,..

III. TRANSVERSE EQUIVALENT CIRCUIT IN THE

FUNDAMENTAL FINLINE MODE

The term n = O in Yll is the contribution of the funda-

mental “box” mode transverse to y (fundamental trans-

verse mode). This is not yet the fundamental finline mode.

By making this contribution explicit, however, it is possi-

ble to develop a convenient transverse equivalent circuit in

the fundamental finline mode itself.

HZO is the transverse magnetic field of the fundamental

transverse mode (as HXO = O). Due to the presence of the

iris at y = O, the above is discontinuous by an amount

H; – H: = AHZO. Let us extract the term n = O from the

summation in Yll and write in place of the integral equa-

tion (17) an equivalent integral equation of the form

‘HdTl+y”[a=O
where P denotes the column vector Pm and

1 “1 w

(18)
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gnR _

hnR I

Fig. 2. Transverse admittances as seen by the fin

Fig. 3. Simplified equivalent circuit for the fundamental transverse
mode.

Solving for X gives

X= – AHZOIYII – Y12Y~lYzl] ‘1.&. (19)

The amplitude EXO of the transverse field of the fundamen-

tal transverse mode (its voltage at y = O in the equivalent

circuit of Fig. 3) is given by

P:*X = EXO.

This is related to the discontinuity in the transverse mag-

netic field (the current) by the total admittance seen by the

mode at y = O, i.e.,

AHzo = (go~ + go~)Exo

where go~ and go~ are the admittances seen by the

fundamental transverse mode on either side of the fin (see

Fig. 2). The fin itself is seen by the fundamental transverse

mode as a transverse discontinuity whose admittance is

given by

g = ( P:” [ Y~~– Y12Y2;1Y21]-?po)-’. (20)

The condition of transverse resonance at y = O gives there-

fore

gOL(~, kO)+gOR(fl, kO)+&’(~, kO)=o.

A solution for ~ at a given frequency k. is thus obtained

at the resonance of the network given in Fig. 3. When

solving for the fundamental mode, the higher order trans-

verse modes are cutoff and therefore essentially localized
about the fin. Thus, they can be represented as a fin

admittance in terms of lumped components.

The order of matrix employed in the expression for the

fin admittance g is determined by the size of expansion.

But in view of the nature of the expansion set, the matrix

order need not be increased beyond 2 x 2. In fact, the

zeroth order is sufficient for all but very large fin gaps;

furthermore, the term Ylz. ( Yaz) -1. Yql arising from EX to

E= coupling may be ignored for small gaps and thin irises

at least. Hence, by virtue of the Schwinger mapping,

TABLE I
COMPARISON OF ZEROTH- , FIRST- , SECOND- , AND

Frequency /Ghz

80
82
8.4
8.6
S.8
‘?0
9.2
9.4
9,6
9.8

10.0
10.2
10 4
10.6
10 8
11.0
11.2
11 f.
11 6
11.8
12.0

THIRD-ORDER SOLUTIONS
1

(o)

0,850961
0 861708
0,871585
0.88068L
O 889091
0.896874
0 906111
0.910836
0 917112
0.922993
0 928497
0.933679
0 938332
0.9 L2864
O 9L7132
0.951156
0 95L9SL
O 958S66
0,967945
0.965167
0.96822L

Betalko

(1)

O 8c9011
O 859725
0 869568
0 878635
0 887007
0 89L764
0 901961
0 908655
0 914893
0 920718
0,926?66
O 931271
0 936062
0 9L0565
0.9 LL805
0 91.8801
0.952571
0 956133
0 959502
0 962692
0 965771

(21

0 8L9001
0 859716
0 869S58
O 878627
0 887000
D 89475L
O 901936
0 908678
0 91 L884
O 920709
0 926158
0.931263
0 936055
0.9 G0559
O 9LL798
0.94879L
0 952566
0.956126
0 959495
0.962684
0.965703

-=+
0 8L9007
0 85971t
0 869560
0 878627
0 887000
0 894753
0 901937
0 908625
0 916877
0 920709
0 926158
0 931263
0 936055
0.960558
0 9LL798
O 9L879G
O 952563
0 956?26
0 959696
0.962683
0.965702

I

where yfl/n is the limit of YIIH for large n, i.e., as n ~ m,

Ylln ~ y~l/n. Its value is obtained by taking the above

limit in Appendix I, which yields

, _ 2f12-(l+cr)k:

“1-/=[:] “

It can be shown that the correction series converges rapidly

and can be truncated after a few terms (n > mf ).

For very small fin gaps, the correction series is negligible

and in terms of the “effective frequency” variable

we can write

where

g=2- +juC
juL

~=(f,-l)[~]2kilnCsc’[;]

1[1
C= 21n CSC2 ~

(see Fig. 3). Table I illustrates the convergence of the

propagation constant of the fundamental finline mode for

increasing order of the expansion for a moderately large
fin gap (w/a = 0.2). The first column (N= O) corresponds

to the above analytical formula including the correction

series with nd =12.

IV. CUTOFF PROPERTIES

It is apparent from (11) that at cutoff (k= kC, ~ = O)

the off-diagonal blocks of the 2 X 2 Green’s function vanish

completely, so that the TE and TM components of the

hybrid mode are decoupled. Also, at that point, only the

cutoff wavenumber kC enters the dispersion equation. The

cutoff is, therefore, more easily determined as well as

analytically approximated than the general case. Once the

cutoff is found, it is also possible to identify specific
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Fig. 4. Basis functions for LSE modes.

x=- ;

Fig. 5. Basis functions for LSM modes.

families of finline modes, and their individual C-k char-

acteristics not too far from cutoff can be approximated by

means of a simple square root behavior. For these reasons,

we will now consider the problem of determining g cutoff in

some detail.

As noted, at cutoff, the coupling matrices Ylz and Yzl

vanish, and (17) reduces to

Yllx = o (21a)

Y22Z = o. (21b)

Modes which are TE to y, i.e., LSE at cutoff, are obtained

by setting E== O (i.e., Z = O).

Now orthogonal solutions of the quasi-static problem in

the fin gap are given by

fro(e) = &me, m>()

f,(o)=;.
The relationship between x and 6 is established in (A3).

The fro’s are in fact solutions to the quasi-static problem of

the infinite parallel-plate waveguide with fin. In the x

domain, these yield fin-gap fields, as shown in Figs. 4 and

5. Under quasi-static conditions, no coupling takes place

between these solutions. Each value of m distinguishes
therefore a whole family of modes (LSE(m) or LSM(m))

with the same quasi-static field in the gap at cutoff. Each

member of the family, however, is a distinct solution of the

dispersion equation arising from assuming that field distri-

bution. Mathematically, this is expressed by the matrix Yll

becoming diagonal. Therefore, the transverse resonance

condition (21a) reduces to each diagonal element being

50

[

‘o&
o -1 -2

Normal wed fm gap (Log 10)

Fig. 6. Cutoff frequency versus fin gap for LSE(0) modes. Guide di-
mensions: a =10.16 mm, 1= h +s = 11.43 mm, s = 0.254 mm, c, = 2.20.

50-

C40 -~

~
$ ~
g 30 -
3~

=
y 20 -
s
u

10-

I~
o -2

Normalwd fm gap (Log 10)

Fig. 7. Cutoff frequency versus fin gap of LSE?(l) modes, dimensions as
in Fig. 6.

individually zero, i.e.,

(Yll)mm=o

or

n=rn

(since P~n = O for n < m), which gives a very good ap-

proximation to the cutoff of the LSE(m) mode family.

For a given m, each solution of (22) (an infinite discrete

set) corresponds to a member of the LSE(m) family.

Similarly, the LSM(m) mode cutoffs are obtained from

i Yzn(kcrn)p;n= 0. (23)
~=~

Note, in particular, that m = O variations for the LSM case

are not acceptable since, from the definition of field quan-

tities, this would represent a dc field in’ the fin gap.
From the solutions to (22) and (23), it is found that the

fundamental finline mode is given by the first member of

the LSE(0) family, corresponding to m = O field variation

in the slot. This mode is therefore pure LSE at the cutoff

point, although in general it is a hybrid HE mode.

Figs. 6 and 7 show the variation of cutoff frequencies

versus the fin gap for the LSE(0) and LSE(l) mode fami-
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Fig. 8. Cutoff frequency versus fin gap of LSM(l) modes, dimensions
as in Fig. 6.

lies occurring below 50 GHz in an X-band finline. Notice

that modes which display maximum EX at y = O experi-

ence a pronounced reduction in cutoff as the fins intrude

into the guide. This is due to their increased interaction.

Those with a node at y = O, however, starting with the first

higher order finline mode, remain essentially unaffected by

the fins. This is particularly so in the case of the highly

symmetrical guide chosen in the analysis, where the central

node of EX occurs very near the plane of the fins.

Fig. 8 gives cutoffs for the first family of induc-

tive modes, the LSM(l). As reported by Omar and

Schiinemann [17], the inductive modes experience an in-

crease in cutoff as the fin gap is reduced. Although these

changes should more appropriately be regarded as shifts

away from modes of dielectrically loaded waveguide as the

fin modes become established.

From Figs. 6–8, we therefore conclude that finline is

LSE dominated (HE dominant in general). The first

LSM-type mode typically occurs as the tenth higher order

mode; however, the exact position in the mode spectrum

depends upon the fin gap, since LSE and LSM cutoffs can

cross over, leading to degeneracy when they coincide.

V. ASYMPTOTIC BEHAVIOR OF CUTOFF

We shall now examine (22) and (23) in some detail to

discover any asymptotic behavior in the cutoff values

which might be of use in any further work.

Now the elements yll., .Y22. appearing in (22) and (23)

correspond to field variations with x of order n. As the

frequency is increased, a point is reached at which the

corresponding parallel-plate mode becomes propagating

and the modal admittances seen at either side of the fin

begin to introduce tangent-type variations into the overall

susceptance functions ((22) and (23)). The behavior of

these functions therefore becomes progressively more com-

plicated with cutoff frequency. However, the cutoffs given

by zeros are straddled by poles of the admittance at either

side of the fin. Thus, locating these poles leads to sys-

tematic solution for cutoffs by computer. Furthermore,

poles and zeros increasingly cluster together, so that when

searching for very high cutoffs ( >100 GHz in the present

100 -
i I

I I
; I

Ii , I

l!
I I

50 - I I

Ii
[ I
I I

l!
I I
II /,

0 25 \/ 26 I 27 28 29 I I 30

I /
I I
I I

I I I I
50 I 1

I I I
I I

I

1oo-

Fig. 9. Typical occurrence of roots to the cutoff equation, dimensions

POSITI

as in Fig. 6.

TABLE II
OF POLES OCCURRING IN SOLUTION FOR CUTOFF

LSE(0) I LSE(l) I LSH(l)

72.8375 1-1-
13.1234
25.6719
26.2467
29.3099
29. S275
31.8687
32.3325
38.5000
38.8595
39.370?
39.5065
1.8.3023
69.2126

29 3099
29 5275
34,8687
32.3125

38.8595

39 5065
48.3023
L9 2126

32. ?Q6L
32 3125

39 1233

39 5065
L8 5125
L9 2726

case) it is sufficient to locate just the poles. Even for low

cutoff values, the same effect of clustering is observed for

very small fin gaps, as a consequence of a very large

number of transverse modes being coupled to the fin-gap

field.

Fig. 9 illustrates the occurrence of pole-zero pairs in the

LSE(0) solution. Since the pole positions can be easily

determined, the asymptotic cutoff frequencies can be ob-

tained in a straightforward manner. Accurate solutions to

(22) and (23) are only needed to provide a small number of

corrections appropriate to the particular fin gap. Table II

gives a list of poles relevant for the LSE(0), LSE(l), and

LSM(l) solutions, confirming the above observations.

VI. SIMPLIFIED DISPERSION EQUATIONS

To complete the characterization of the finline modes,

we return to the problem of describing their dispersion

relationships by a simple expression of the form

p = q{- (24)

where k. is the cutoff wavenumber previously obtained

and q is now to be determined.

It has been shown that in a lossless, reciprocal, uniform

waveguide, the propagation constant as a function of

frequency can be expanded near cutoff as an odd Laurent

series of /~ [19]. ln its simplest form, this expansion

is just (24) where q is a constant.

As we now assume that q is a constant quantity, we

therefore find the limit k: -+ O of interest. At this point,

the problem becomes quasi-static and since all the firdine

modes are cutoff in this limit, q can be determined from
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1.5
[
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0

E
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CJ

1.0-
1

1.51 ● R190r0us Spot Frequency Points

Fig. 10. Approximate dispersion curves with exaet points for the first
three modes, dimensions as in Fig. 6.

.401

““k=====
.801

Fig. 11. Approximate dispersion of the following first eight higher
order modes (with exact points), dimensions as in Fig. 6.

the decay coefficient yO and the cutoff wavenumber kC

Y()

‘=<”

Before solving for yO, closer examination of the Green’s

admittance yields some useful simplifications, which greatly

ease correlating the yO with its respective k,. As k; * O we

observe that all TM admittances vanish; furthermore, the

air and substrate regions become indistinguishable to the

TE modes. Thus, the effect of the dielectric is not felt and

the problem becomes that of the static case in a finned

waveguide. If, moreover, the fins are centrally placed in

the finline enclosure, then it is noted that the coupling

matrices Ylz and Yzl vanish, so that the solution for YOof

the LSE(rn) and LSM(W) mode families decouples and

can proceed as before.

Thus, y. for the LSE(m) modes is given by

and for the LSM(W) modes by

f Y22n(Yo)%n = o.
n-m

The assumption of a centrally placed fin leads to dis-

crepancies with the higher order modes. But since they

tend to propagate much more in the air region of the

enclosure, q is sufficiently close to unity not to warrant

further evaluation. However, an exception arises in the

case of the third mode, which, like the fundamental, has

,.50~
Normali;~d fm gap (Log 1~$

Fig. 12. Cutoff frequency for the fundamental mode in X-band finline,
dimensions as in Fig. 6.

1.50
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[
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lb”,.OOO~
Normahsed f!n gap (Log ;$I

Fig. 13. v for the fundamental mode in X-band finline, dimensions as
in Fig. 6.

strong interaction with the fins, and assuming ~ =1.0 may

not be sufficiently accurate. The second mode, as men-

tioned earlier, vanishes at y = O and is little affected by the

fin; henee, rI is very close to unity in any case.

Dispersion curves calculated for the first three modes

give excellent agreement with the “spot frequency” results

obtained with the rigorous analysis of Section II, since for

these the symmetry assumption has little effeet. Results for

the dispersion of modes of even higher order assuming

q =1.0 are similarly very good, as shown in Figs. 10 and

11.

Finally, Figs. 12 and 13 give kC and q for the funda-

mental mode for any given fin gap on a particular sub-

strate. Such results can be readily incorporated into a

curve fit for design purposes.

VII. EXPERIMENTAL AND THEORETICAL COMPARISON

In order to assess validity, measurements of guided

wavelength were performed using X-band finline with an

adjustable fin gap. The method of observing the frequency

response of a resonant length of line was employed, and in

order to maintain a high Q factor, the short-circuited line

was excited by small loop probes. Table III gives results

for the fundamental mode, along with a comparison of two
sets of theoretical predictions, one obtained with the

method of Section II, the other by the established

spectral-domain analysis. In both, a two-term expansion in

the fin gap was used. However, the additional calculations

required in the speetral-domain technique imply that the

present method has a clear computational advantage, par-
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TABLE III
COMPAZUSONOF EXPERIMENTALRESULTSAND SPECTRAL-DOMAIN
METHOD wm

Fre Queri Cy/GHZ

4 920
5 020
5 200
5 390
5 610
5 857
6 lkl
6 L47
6,772
7,113
7,472
7 8L3

8.223
8,612
9,070
9 L14
9.825

10 2L1
10.663
11.091
11.516
11 9L.$
12,388

PRESENT THEORY FOR T~ FUNDAMENTAL MODE

G., ded wavelength /..

300 00
200 00
150 00
120 00
100 00

85 70
75 00
66 66
60.00
S6,5L
50.00
1.6.15
62,85
Lo. oo
37.50
35,29
33 33
31 58
30.00
28,57
27.27
26.08
25,00

Theo, et, ,,l

P,, ,,. ?

method

299 82
207 59
168 15
119 51
100 29

86 66
75. s4
67.11
60.38
51. 90
50.29
46.60
&3.08
40.22
37 70
3s L9
33,52
31 75
30 16
28 72
27, L2
26,2L
25,1L

sDectr.3i
‘s 0..>.

330 26
216 91
151 &l
121 18
101 26

87 05
75 9.
67 38
60 57
55 03
50.38
f.6 .47
L3 13
LO 25
37 70
35 L9

33 52
31 75
30 16
28 70
27 I- I
26 22
25 IL

TABLE IV
EXPERIMENTAL MEASUREMENT OF THS FIRST HIGHER ORDER

MODE COMPARED WITH SIMPLIFIED DISPERSION THEORY

I I I
Fre Que”c Y/GHz G“idea wave(, ngth /m.

Mea S.”red Calc” [a tea

IL 503L L6 15 Lb 22
lL 7?90 L2 85 L3 >0
IL 963L Lo 00 Lo 20

1.s0

1.25

1

1.00-

-$.,75
z
m

0.50

r

X Experimental PO, ~tS

0.25

04~4
Frequency (GHZ)

Fig. 14. Theoretical dispersion curve with experimented points, dimen-
sions as in Fig. 6.

titularly so when the accurate approximation of Section V

is employed. Fig. 14 illustrates the excellent agreement

between experimental and theoretical values. Finally, by

operating the resonant line in the 14-GHz region, it was

possible to discern resonances due to the first higher order

mode. These compare very successfully with the theoretical

predictions using q = 1.0 and ~c = 12.97 GHz in Table IV.

VIII. CONCLUSIONS

We have introduced a general and rigorous space-

domain solution of unilateral finline based on transverse

resonance diffraction. The affinity of the problem to that

of a capacitive iris in waveguide is highlighted, and by

satisfying a priori the appropriate edge condition, conver-

gence is achieved with very low-order matrices. The quasi-

analytic character of the treatment allows an accurate

wide-band scalar dispersion equation for the fundamental

mode as well as accurate approximate dispersion equations

for the higher order modes to be derived. Finally, consider-

ation of the cutoff properties of these modes results in a

natural division of the spectrum in mode families and their

characterization.

APPENDIX I

The admittances appearing in the sums under

given by

(14) are

Y12n =

Y22. =

It is now

additional

cos ~~sin Tn

(L?-b-%+k)
n

~(g.~+g.~)+ ~(h.,+h..). (Al)

noted that the choice of (8) and (9) has the

advantage of producing by integration by parts

the factors n – 1 in y12. and n – 2 in y22~ that ensure proper

convergence. The exclusion of the n = O term from all but

yll(x, x’) arises naturally from the aforementioned defini-

tion of field quantities (1)-(10).

APPENDIX II

The Schwinger functions are derived from the conformal

mapping between a parallel-plate waveguide and a system

containing an iris. Such a mapping is of the general form

cosh W = al + a2cosh T.

For the symmetrical case in question, the above mapping

restricted to the x axis is

2 71x
Cos — = al+ (Y2COS0

a
(A2)

such that

X=() +e=()

~=l!~d=r
2“

Thus

VW

al= cos2 2a
(A3a)

Tw

‘2= ‘in*2a “
(A3b)

We then find that the required singularity at x = w/2 is

found in the term d O/dx linking functions of O to func-

tions of x. Furthermore, the mapping now allows us to

analytically determine certain infinite sums.

In the (3 domain, we chose the basis set { ~~ }, where

rfro(f)) = ~ cosmtl, m>O

1
=~, m=O. (A4)

This basis may be linked to the set (+k~) in the x domain
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via the coefficients P~~, such that where

4%(X)= i ~mnfm(e).
~=()

(A5)
/ln= 2, ~=f)

8.=1, n>O.

It is clear from (6a), (A4), and (A2) that the first few

coefficients are obtained as ACICNOWLEDGMENT
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a

By considering Chebyshev polynomials, we can derive a

recursive formula for generating further coefficients. Since [1]

2nn
Cos

[1
—x= T. COS~X =T. (al+ Cr2COSd) (.@ [2]

a

using the recursive formula

T.(Z) =2 ZT~_1(Z)– Tn_2(Z) (A7) ::

with the trigonometric identity

Cosecosmo =;[cos(m –l)e+cos(m+l)d]
[5]

equation (A7) becomes

n [6]

[9]

(A8)
[10]

where P;n are the coefficients linking the unnormalized

sets [11]

{Cos%x)and {cosmd },

Hence

P;n = 2alp;, n-1– %?, n.z + ff’p:+l, n-l

[12]

[13]

since, from (A2), (A3a), and (A3b), we have

[15]

[16]

and the coefficients P;n can be generated as required. The [17]

coefficients P~n are obtained directly from P;n by apply-
ing the normalization [18]

[19]

(A1O)
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