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Systematic Characterization of the Spectrum
of Unilateral Finline

C.A. OLLEY AND T. E. ROZZI, SENIOR MEMBER, IEEE

Abstract —The fundamental mode of finline is well documented. A
sufficiently complete knowledge of the higher mode spectrum, however, is
necessary for the treatment of discontinuities. This paper is concerned
with a rigorous approach to the problem of the spectrum of unilateral
finline on the basis of a variational solution in the space domain and
fransverse equivalent network considerations. We call this method trans-
verse resonance diffraction. Having satisfied the correct edge condition a
priori, the analysis produces highly accurate dispersion characteristics
calculated at each “spot frequency” for the fundamental and higher order
modes with matrices of very low order. By exploiting the quasi-
analytical character of the model, it is possible to derive a systematic and
complete characterization of the spectrum in terms of “mode families.”
Moreover, simple-to-use wide-band approximations te the dispersion char-
acteristics are also obtained which are suitable for evaluation ‘by a desktop
calculator.

I. INTRODUCTION

ITH THE INCREASED DEMAND for millimeter

systems, E-plane structures such as finline have be-
come established for use in millimeter-wave integrated
circuits. Originally proposed by Meier [1], finline avoids
unnecessary miniaturization at the millimeter frequencies
while offering the potential for low-cost batch production
and a degree of compatibility with active devices. Finline
may be regarded as a form of planar ridged waveguide;
this was recognized by Saad and Begemann [2], who pro-
duced approximate solutions for the fundamental mode
using a simple equivalent circuit. Although the first fully
rigorous solution was given earlier by Hofmann [3], this
was time consuming and suffered from relative conver-
gence problems. Saad and Schiinemann [4] presented an
analysis in terms of an equivalent set of rectangular wave-
guides to obtain a first-order design theory for simple
finline filter sections, while Shih and Hoefer [5] applied the
general TLM method with a view to obtaining the equiv-
alent fin susceptance for a transverse resonance solution of
the cutoff.

However, since 1979, the spectral-domain technique de-
veloped by Itoh and subsequently applied to finline [6] has
been the accepted analysis. Subsequent papers [7], [8] have
used this analysis to present results on the general proper-
ties of finline, including an assessment of loss, and have [9]
extended the method to more general unilateral structures.
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Work has since been directed at the effect of finite fin
thickness and substrate holding grooves using more gen-
eral analyses, e.g., Beyer [10] and Wahldieck [11]. But, with
certain exceptions [5], [6], most work has been directed at
the fundamental mode. In addition, considerable computa-
tional effort is required even with the spectral-domain
analysis, and this has led other authors to adopt approxi-
mate techniques, such as curve fitting (Pramanick and
Bhartia [12]), and modified transverse resonance (Saad and
Schiinemann {13]). This motivates work towards rigorous
approaches that yield simple and easy-to-use equivalent
circuits.

Actual finline components, however, involve discontinu-
ities. The solution of discontinuity problems, in turn, in-
volves field matching with higher order modes. Therefore,
in order for work to proceed on the analysis of finline
discontinuities, such as in [15]-[16], a deeper understand-
ing of the higher order modes is required. The identifica-
tion of inductive and capacitive modes by Omar and
Schitnemann [17] is useful. Although LSE and LSM decou-
pling has been previously employed in the spectral-domain
work, its significance was not fully appreciated.

We present an electromagnetic treatment which is rigor-
ous but results in easy-to-use equivalent networks for the
general solution and for cutoffs of various types of higher
order mode. It also provides an accurate but simplified
dispersion relation. The method operates in the space
domain making use of transverse circuits and taking into
explicit account the fins and their associated edge condi-
tions. Restricting ourselves to the idealized unilateral finline
structure as given by Fig. 1, the thickness of the fin
metallization is ignored, as are any means of supporting
the substrate. The transverse Green’s admittances as seen
at the fin aperture are obtained in the space domain; use is
then made of the mapping, originally introduced by
Schwinger [18], for the analysis of capacitive irises in
waveguide, in order to introduce basis functions which
implicitly satisfy the correct edge conditions. This judi-
cious choice of basis yields rapid convergence with an
exceptionally low order of required expansion.

With a view to characterizing the spectrum and obtain-
ing simple but accurate broad-band equivalent circuits, we
recognize two fundamental properties of hybrid modes in
closed waveguide.

1) At cutoff, TE and TM contributions are decoupled,
so that the Green’s admittance becomes block diagonal
and the resulting dispersion equation depends only on the
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Fig. 1. Idealized unilateral finline.

cutoff wavenumber k,=k_ rather than on %k and the
propagation constant B8. This leads to a systematic and
quasi-analytical determination of the cutoff wavenumbers
k.. A natural grouping of modes in “mode families”
ensues, each family being characterized by a distinct
quasi-static field in the gap.

2) Once the cutoff wavenumber of a mode is found, the
propagation constant near cutoff must be expressible as an
odd Laurent series of yk3 — k2 [19]. This realization leads
naturally to an approximation for the dispersion equation,
the simplest form of which is of the type

B=nm

with a real n > 0 virtually independent of frequency. This
approximation we prefer to use over the “effective dielec-
tric constant,” which is still considerably frequency depen-
dent.

II. RIGOROUS ANALYSIS

The fields in finline will be described by y-directed
Hertzian vector potentials coupled together in some way.
Thus

E=— jopv XII,+ k*IT,+vv-II,
H=K1I,+vv-II,+ joev XII,

(1)
)
where
I, =y, (x, p)e ™ (3)
I, =¢,(x,y)e (4)
and propagation has been assumed in the z-direction with
phase coefficient .
For the analysis, the y-dependence of functions ¢ (x, y)
is expressed in terms of the TE, TM (to y) eigenfunctions

of slab-loaded waveguide x,,(»), X..(¥). These are nor-
malized so that x,(0) =1

V(% 3) = X Upinn(X)X4n(¥) (5a)
n=0
Ye(x, ) = X Uien(x) Xen( ) (5b)
n=1
where
2 nmw
bpn(x) =1/ — cos —x, n=24,6, -,
a a
; —§<x<% (6a)
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1
=13/ —, n=0

a

2 nw

¢,,(x) =1 — sin—=x. (6b)
a

Moreover, at y =0, it is possible to express four indepen-

dent x and z field components in terms of the set { ¢,,,(x)}

only, by means of the choice below:

E(0= T Epn(r)  0)
a 0 i
SREE0-LEe.) ©
A LACOEED WA RO

e ]
H(%0)= ¥ Hg(x).  (10)
n=1
An additional advantage of using modified versions of E,
and H,, namely, to produce proper convergence of the
Green’s functions, is discussed further in Appendix I.

The as yet unknown coefficients may be obtained from
the modal amplitudes of transversely propagating pure TE
and TM modes in the regions left and right of y = 0 using
a now classical axis rotation due to Itoh [20]. The hybrid
field is thus expressed in terms of voltages and currents
upon TE and TM transmission lines. Eliminating voltages
and currents leads to a direct relationship between the E
and H fields. For instance, to the right of y =0

- Hzn —1 hnR 0 Exn
[ I }—NT,, [0 gR]T"N[E } (11)

xn n zn

where

cos T,

— jsinr, 1
— n
"—[—jsinTn }N 0

COS T,

x|~

B

sint, = T
G

Here, 2,5, 8,z are the TM and TE admittances, respec-
tively, seen by the nth mode looking right of y = 0, given
by

We

hor =" cothk,,!

ny

= kny hk [
cot
&nr ] n ny

nw2
kny=\/[7] +Bz—k%.

From the above, by superposition, a relationship be-
tween the total fields left and right of the fin aperture may
be formed. Thus, at y =0 for the right-hand side of the

where
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fin, we have in operator form,

H Ylli Yé Ex
=l . . ||7ad (12)
f H, dx Yy Y5 parE

It is noted that no distinction between fields right and left
of the aperture need be made inasmuch as the fields are
continuous there. On the left-hand side, we have

H, YE Yh E,
- a sy w70 (13)
- L L —_—
- [Hoax| |75 T ~——E

The sign difference on the left-hand sides of (12) and (13)
is noted. This is a consequence of the opposite orientation
of the Poynting vector at the two sides of the aperture.

The operator notation is defined as follows. For exam-
ple,

HzIEz=0 = Yﬁ.Ex = f_wj/z Ylli(x’ x,)Ex(x/’O) dx’

where YR(x, x’), etc., are defined in Appendix I. It is
noted here that ¥, denotes the integral operator whose
kernel is given by Y;;(x, x’). The matrix representation of
Y, in terms of a discrete basis will be indicated below by
Y,,, and elementwise by (¥;)mn.

We now apply the continuity of fields at the fin aper-
ture. By adding (12) and (13), one derives the following
system of integral equations for E, and (d/dx)E, involv-
ing the total cross-sectional admlttance operators Y, =TR
+ YL, ete:

I?11 fm E,
N D A =0 (14)
Y21 Yzz ; EE

where the corresponding Green’s admittance functions are
of the form

Y (x,x) = X Yy,85,(x) ¢, (x7)

n=0

Yip(x, %) = 2 Vi@, (%) 6p,(x7)

n=1
Y21(x, xl) == Yu("» x’)

o0
Yoo (x, x') = 21 Yoo, @1 (%) 91,(x7)
n—
with Y7, etc., given in Appendix L.

In order to solve (14) by the Ritz—Galerkin method in
real space, we expand the fields onto the orthonormal
basis { f,,} which satisfies the r~!/? singularity at the fin
edges, as follows:

IZx(x) dx X,
N 1, o s

A suitable choice for the functions f, is that originally
introduced by Schwinger for the analysis of capacitive
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irises in waveguide [18] (see Appendix II).

The Schwinger functions result from the conformal
mapping of the static fields between a parallel-plane wave-
guide and a waveguide with fin. Neglecting the slight
perturbing effect of the dielectric, the quasi-static behavior
of the fields in the fin gap is described exactly in terms of
the above functions. The functions thus lend themselves as
an ideal basis for use in a variational solution for finline.
The perturbations due to the presence of the dielectric
substrate and the proximity of the end walls, however, do
not allow an exact solution directly from the mapping.

In the fin gap, we can also expand each ¢,, in terms of

Lo 1€,

N
¢hn= Z P,

(16)

The coefficients P,,, are defined in Appendix II. By appli-
cation of (15) and (16) in (14), the latter is therefore
transformed into a matrix equation

Y. Y, X
Y, Y,||Z
where
o0
(Yll)mk = Z Y110 LoinPren
n=0
[o]
(Yll)mk = Z ylZannPkn
n=1
(Y2l)mk == (Y12)mk
e o]
(’/'22)mk = Z y22annPkn'
=1
III. TRANSVERSE EQUIVALENT CIRCUIT IN THE

FUNDAMENTAL FINLINE MODE

The term n=0 in Y}, is the contribution of the funda-
mental “box” mode transverse to y (fundamental trans-
verse mode). This is not yet the fundamental finline mode.
By making this contribution explicit, however, it is possi-
ble to develop a convenient transverse equivalent circuit in
the fundamental finline mode itself.

H,, is the transverse magnetic field of the fundamental
transverse mode (as H ;= 0). Due to the presence of the
iris at y 0, the above is discontinuous by an amount
HE — HR = AH,,. Let us extract the term n =0 from the
summatlon in ¥}; and write in place of the integral equa-
tion (17) an equivalent integral equation of the form

AHZO[P"]+Y-[X] =0
0 VA

where P denotes the column vector P, and

(18)

00
Z yllnPnPnT

n=1

Y21

Yl 2

Y22
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Fig. 3. Simplified equivalent circuit for the fundamental transverse

mode.

Solving for X gives
_ -1
X=- AHZO[Yll - Y12Y221Y21] “By. (19)

The amplitude E, of the transverse field of the fundamen-
tal transverse mode (its voltage at y =0 in the equivalent
circuit of Fig. 3) is given by

PI-X=E,_.

This is related to the discontinuity in the transverse mag-
netic field (the current) by the total admittance seen by the
mode at y =0, i.e.,

AH,,= (gOL + gOR)ExO

where g,, and g, are the admittances seen by the
fundamental transverse mode on either side of the fin (see
Fig. 2). The fin itself is seen by the fundamental transverse
mode as a transverse discontinuity whose admittance is
given by

&= (POT' [Yu - Y12Y2_21Y21] _1‘P0) ) (20)

The condition of transverse resonance at y = 0 gives there-
fore

Zor(B. ko) + gor(B. ko) + 8(B, ko) = 0.

A solution for 8 at a given frequency k, is thus obtained
at the resonance of the network given in Fig. 3. When
solving for the fundamental mode, the higher order trans-
verse modes are cutoff and therefore essentially localized
about the fin. Thus, they can be represented as a fin
admittance in terms of lumped components.

The order of matrix employed in the expression for the
fin admittance g is determined by the size of expansion.
But in view of the nature of the expansion set, the matrix
order need not be increased beyond 2X2. In fact, the
zeroth order is sufficient for all but very large fin gaps;
furthermore, the term ¥,,-(¥,,) 1-¥,, arising from E, to
E, coupling may be ignored for small gaps and thin irises
at least. Hence, by virtue of the Schwinger mapping,

ol Bk - ﬁl] Py
o5 [2a ] ]+ ,El Tun T Pg

g=yiln
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TABLEI
COMPARISON OF ZEROTH- , FIRST- , SECOND- , AND
THIRD-ORDER SOLUTIONS

Frequency/Ghz Beta/ko
[§:H) «1) ) T3
380 0.850961 0 849011 0 849001 0 849001
8 2 0 861708 0 859725 0 859716 0 85973¢
8.4 0.871585 0 869568 0 869558 0 869560
8.6 0.880084 0 878635 0 878627 0 878627
8.8 0 889091 0 887007 ¢ 887000 0 887000
90 0.896874 0 894764 0 894754 0 894753
9.2 0 904111 0 901961 0 901936 0 901937
9.4 0.910834 0 908655 0 908678 0 908625
9.6 0 917112 0 914893 0 914884 0 914877
9.8 0.9229903 0 920718 0 920709 0 920709
10.0 0 928497 0.926166 0 926158 0 926158
10.2 0.9334679 0 931271 0.931263 0 931263
10 ¢4 0 938332 0 936062 0 936055 0 936055
10.6 0.942864 0 940565 0.940559 0.940558
10 8 0 947132 0.944805 0 944798 0 944798
11.0 0.951156 G 948801 0.948794 0 948794
11.2 0 954954 0.952571 0 952564 0 952563
11 & 0 958546 0 956133 0.956126 0 956126
11 6 0.961945 0 959502 0 959495 0 959494
11.8 0.965167 0 962692 0.962684 0.962683
12.0 0.968224 0 965711 0.965703 0.965702

where y;; /n is the limit of y,;, for large n, i.e.,, as n — o0,
Y11, — i /0. Its value is obtained by taking the above
limit in Appendix I, which yields

287 —(1+¢,)k;
]

It can be shown that the correction series converges rapidly
and can be truncated after a few terms (n > nd).

For very small fin gaps, the correction series is negligible
and in terms of the “effective frequency” variable

i

I
n=

we can write

1
=—+ juC
& JulL Ju
where

1 alz , ,[7w
z=(€r—1)[;] koln CSC [g”

aw
C=2n cscz[——-—-]

2a

(see Fig. 3). Table I illustrates the convergence of the
propagation constant of the fundamental finline mode for
increasing order of the expansion for a moderately large
fin gap (w /a = 0.2). The first columm (N = 0) corresponds
to the above analytical formula including the correction
series with nd =12.

IV. CUTOFF PROPERTIES

It is apparent from (11) that at cutoff (k=k_, B=0)
the off-diagonal blocks of the 2 X2 Green’s function vanish
completely, so that the TE and TM components of the
hybrid mode are decoupled. Also, at that point, only the
cutoff wavenumber k, enters the dispersion equation. The
cutoff is, therefore, more easily determined as well as
analytically approximated than the general case. Once the
cutoff is found, it is also possible to identify specific
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Fig. 5. Basis functions for LSM modes.

families of finline modes, and their individual 8-k char-
acteristics not too far from cutoff can be approximated by
means of a simple square root behavior. For these reasons,
we will now consider the problem of determining cutoff in
some detail.

As noted, at cutoff, the coupling matrices ¥;, and ¥,
vanish, and (17) reduces to

Y, X=0
Yzzz = 0.

(21a)
(21b)

Modes which are TE to y, i.e., LSE at cutoff, are obtained
by setting E, =0 (ie., Z=0).

Now orthogonal solutions of the quasi-static problem in
the fin gap are given by

2
— cosmd, m>0

m

fn(8) =

o(0) =

The relationship between x and 8 is established in (A3).
The f,’s are in fact solutions to the quasi-static problem of
the infinite parallel-plate waveguide with fin. In the x
domain, these yield fin-gap fields, as shown in Figs. 4 and
5. Under quasi-static conditions, no coupling takes place
between these solutions. Each value of m distinguishes
therefore a whole family of modes (I.SE(m) or LSM(m))
with the same quasi-static field in the gap at cutoff. Each
member of the family, however, is a distinct solution of the
dispersion equation arising from assuming that field distri-
bution. Mathematically, this is expressed by the matrix Y,
" becoming diagonal. Therefore, the transverse resonance
condition (2la) reduces to each diagonal element being
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Fig. 6. Cutoff frequency versus fin gap for LSE(0) modes. Guide di-
mensions: ¢ =10.16 mm, / = h + 5 =11.43 mm, s = 0.254 mm, ¢, = 2.20.
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Fig. 7. Cutoff frequency versus fin gap of LSE(1) modes, dimensions as
in Fig. 6.

individually zero, i.e.,

(Yll)mm =0
or

o0

Z ylln(kcm)Prrzm=0 (22)
n=m
(since P,, =0 for n<m), which gives a very good ap-
proximation to the cutoff of the LSE(m) mode family.

For a given m, each solution of (22) (an infinite discrete

set) corresponds to a member of the LSE(m) family.
Similarly, the LSM(m) mode cutoffs are obtained from

Z y22n(kcm)Pm2n=O' (23)

Note, in particular, that m = 0 variations for the LSM case
are not acceptable since, from the definition of field quan-
tities, this would represent a dc field in the fin gap.

From the solutions to (22) and (23), it is found that the
fundamental finline mode is given by the first member of
the LSE(0) family, corresponding to m = 0 field variation
in the slot. This mode is therefore pure LSE at the cutoff
point, although in general it is a hybrid HE mode.

Figs. 6 and 7 show the variation of cutoff frequencies
versus the fin gap for the LSE(0) and LSE(1) mode fami-
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Fig. 8. Cutoff frequency versus fin gap of LSM(1) modes, dimensions
as in Fig. 6.

lies occurring below 50 GHz in an X-band finline. Notice
that modes which display maximum E, at y =0 experi-
ence a pronounced reduction in cutoff as the fins intrude
into the guide. This is due to their increased interaction.
Those with a node at y = 0, however, starting with the first
higher order finline mode, remain essentially unaffected by
the fins. This is particularly so in the case of the highly
symmetrical guide chosen in the analysis, where the central
node of E occurs very near the plane of the fins.

Fig. 8 gives cutoffs for the first family of induc-
tive modes, the LSM(1). As reported by Omar and
Schiinemann [17], the inductive modes experience an in-
crease in cutoff as the fin gap is reduced. Although these
changes should more appropriately be regarded as shifts
away from modes of dielectrically loaded waveguide as the
fin modes become established.

From Figs. 6-8, we therefore conclude that finline is
LSE dominated (HE dominant in general). The first
LSM-type mode typically occurs as the tenth higher order
mode; however, the exact position in the mode spectrum
depends upon the fin gap, since LSE and LSM cutoffs can
cross over, leading to degeneracy when they coincide.

V. AsyMPTOTIC BEHAVIOR OF CUTOFF

We shall now examine (22) and (23) in some detail to
discover any asymptotic behavior in the cutoff values
which might be of use in any further work.

Now the elements y,;,,, ¥»,, appearing in (22) and (23)
correspond to field variations with x of order n. As the
frequency is increased, a point is reached at which the
corresponding parallel-plate mode becomes propagating
and the modal admittances seen at either side of the fin
begin to introduce tangent-type variations into the overall
susceptance functions ((22) and (23)). The behavior of
these functions therefore becomes progressively more com-
plicated with cutoff frequency. However, the cutoffs given
by zeros are straddled by poles of the admittance at either
side of the fin. Thus, locating these poles leads to sys-
tematic solution for cutoffs by computer. Furthermore,
poles and zeros increasingly cluster together, so that when
searching for very high cutoffs ( >100 GHz in the present
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TABLE II
PosITION OF POLES OCCURRING IN SOLUTION FOR CUTOFF
LSECD) LSECT) LSM(1)
12.8375 - -
13,1234 - -
25,6719 - -
26.2467 - -
29.3099 29 3099 -
29.5275 29 5275 -
31.8687 31.8687 32.1964
32.3125 32.3125 32 3125
38.5000 - -
38.8595 38.8595 39 1233
39.3701 - -
39.5065 39 5065 39 5065
48.3023 48.3023 &8 5125
49,2126 L9 2126 L9 2126

case) it is sufficient to locate just the poles. Even for low
cutoff values, the same effect of clustering is observed for
very small fin gaps, as a consequence of a very large
number of transverse modes being coupled to the fin-gap
field.

Fig. 9 illustrates the occurrence of pole—zero pairs in the
LSE(0) solution. Since the pole positions can be easily
determined, the asymptotic cutoff frequencies can be ob-
tained in a straightforward manner. Accurate solutions to
(22) and (23) are only needed to provide a small number of
corrections appropriate to the particular fin gap. Table II
gives a list of poles relevant for the LSE(0), LSE(1), and
LSM(1) solutions, confirming the above observations.

VI

To complete the characterization of the finline modes,
we return to the problem of describing their dispersion
relationships by a simple expression of the form

B =nyki—k?

where k_ is the cutoff wavenumber previously obtained
and 7 is now to be determined.

It has been shown that in a lossless, reciprocal, uniform
waveguide, the propagation constant as a function of
frequency can be expanded near cutoff as an odd Laurent
series of k3 — k2 [19]. In its simplest form, this expansion
is just (24) where 7 is a constant.

As we now assume that 7 is a constant quantity, we
therefore find the limit k3 — 0 of interest. At this point,
the problem becomes quasi-static and since all the finline
modes are cutoff in this limit,  can be determined from

SIMPLIFIED DISPERSION EQUATIONS

(24)
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Fig. 10. Approximate dispersion curves with exact points for the first
three modes, dimensions as in Fig, 6.
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Fig. 11. Approximate dispersion of the following first eight higher
order modes (with exact points), dimensions as in Fig. 6.

the decay coefficient y, and the cutoff wavenumber &,
1 k. .
Before solving for v,, closer examination of the Green’s
admittance yields some useful simplifications, which greatly
ease correlating the vy, with its respective k. As k3 — 0 we
observe that all TM admittances vanish; furthermore, the
air and substrate regions become indistinguishable to the
TE modes. Thus, the effect of the dielectric is not felt and
the problem becomes that of the static case in a finned
waveguide. If, moreover, the fins are centrally placed in
the finline enclosure, then it is noted that the coupling
matrices Y,, and Y,, vanish, so that the solution for y, of
the LSE(m) and LSM(m) mode families decouples and
can proceed as before,
Thus, y, for the LSE(m) modes is given by

[es]
Z ylln(‘yﬂ)Pn%n = 0
and for the LSM(m) médes by

o0
Z }’2zn(Yo)Pn2m =0.

n=m

The assumption of a centrally placed fin leads to dis-
crepancies with the higher order modes. But since they
tend to propagate much more in the air region of the
enclosure, 5 is sufficiently close to unity not to warrant
further evaluation. However, an exception arises in the
case of the third mode, which, like the fundamental, has
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Fig. 12. Cutoff frequency for the fundamental mode in X-band finline,
dimensions as in Fig, 6.

1.50
140
30
L.20

Lo

I 2
1OQ5 = 2

Normalised fin gap (Log 10)

Fig. 13. 4 for the fundamental mode in X-band finline, dimensions as
in Fig. 6. ’

strong interaction with the fins, and assuming 7 =1.0 may
not be sufficiently accurate. The second mode, as men-
tioned earlier, vanishes at y = 0 and is little affected by the
fin; hence, 5 is very close to unity in any case.

Dispersion curves calculated for the first three modes
give excellent agreement with the “spot frequency” results
obtained with the rigorous analysis of Section II, since for
these the symmetry assumption has little effect. Results for
the dispersion of modes of even higher order assuming
1 =1.0 are similarly very good, as shown in Figs. 10 and
11. '

Finally, Figs. 12 and 13 give &k, and 7 for the funda-
mental mode for any given fin gap on a particular sub-
strate. Such results can be readily incorporated into a
curve fit for design purposes.

VIL

In order to assess validity, measurements of guided
wavelength were performed using X-band finline with an
adjustable fin gap. The method of observing the frequency
response of a resonant length of line was employed, and in
order to maintain a high @ factor, the short-circuited line
was excited by small loop probes. Table III gives results
for the fundamental mode, along with a comparison of two
sets of theoretical predictions, one obtained with the
method of Section II, the other by the established
spectral-domain analysis. In both, a two-term expansion in
the fin gap was used. However, the additional calculations
required in the spectral-domain technique imply that the
present method has a clear computational advantage, par-

EXPERIMENTAL AND THEORETICAL COMPARISON



1154

TABLE III
COMPARISON OF EXPERIMENTAL RESULTS AND SPECTRAL-DOMAIN
METHOD WITH PRESENT THEORY FOR THE FUNDAMENTAL MODE

=
Guided wavelength /mm
Frequency/GHz
Theoretical

1 Measured Present Spectral

| method aomaan

|
4 920 300 00 299 82 330 26
5 020 200 00 207 s9 216 91
S 200 150 00 148 15 151 41
5 3%0 120 GO 11¢ 51 121 18
S 610 100 00 100 29 101 26
5 857 85 70 86 Lt 87 05
6 161 75 00 75.5¢% 75 94
6 447 66 66 67.11% 67 38
6.772 60.00 60.38 60 57
7.113 54,54 54 90 55 03
7.472 50.00 §0.29 50.38
7 843 46.15 446.40 46.47
8.223 42.8S 43.08 43 13
8.412 40.00 40.22 40 25
9.0%0 37.50 37 70 37 70
9 414 35.29 35 49 35 49
9.825 33 33 33.52 33 52
10 241 31 58 31 75 31 75
10.663 30.00 30 16 30 16
11.091 28.57 28 72 28 70
11.516 27.27 27.42 27 LA
11 946 26.08 26.24 26 22
12.388 25.00 - 25.14 25 14

TABLE IV

EXPERIMENTAL MEASUREMENT OF THE FIRST HIGHER ORDER
Mobpg COMPARED WITH SIMPLIFIED DISPERSION THEORY

Frequency/6Hz Guided wavelength /mm

Measured Calculateo

14 5034
14 7190
14 9634

46 15
42 85
40 00

46 22
43 10
40 20

X Experimental Points

. R . . )
4 6 8 10 12 14
Frequency (GHz)

Fig. 14. Theoretical dispersion curve with experimental points, dimen-
sions as in Fig, 6.

ticularly so when the accurate approximation of Section V
is employed. Fig. 14 illustrates the excellent agreement
between experimental and theoretical values. Finally, by
operating the resonant line in the 14-GHz region, it was
possible to discern resonances due to the first higher order
mode. These compare very successfully with the theoretical
predictions using 7 =1.0 and f,=12.97 GHz in Table IV.

VIIL

We have introduced a general and rigorous space-
domain solution of unilateral finline based on transverse
resonance diffraction. The affinity of the problem to that
of a capacitive iris in waveguide is highlighted, and by
satisfying a priori the appropriate edge condition, conver-
gence is achieved with very low-order matrices. The quasi-
analytic character of the treatment allows an accurate

CONCLUSIONS
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wide-band scalar dispersion equation for the fundamental
mode as well as accurate approximate dispersion equations
for the higher order modes to be derived. Finally, consider-
ation of the cutoff properties of these modes results in a
natural division of the spectrum in mode families and their
characterization.

APPENDIX |
The admittances appearing in the sums under (14) are
given by

ylln = COSZTn(hnR + hnL) + Sinz’rn(gnR + gnL)

cOS T, Sin T,
y12n = *——_(hnL - hnR - gnL + gnR)
cos?t, sin’ 7,
Vron = ——;12_(gnR +8,1)+ — 7 (harthyp). (A1)

It is now noted that the choice of (8) and (9) has the
additional advantage of producing by integration by parts
the factors n= ! in y;,, and n”? in y,,, that ensure proper
convergence. The exclusion of the n =0 term from all but
¥11(x, x’) arises naturally from the aforementioned defini-
tion of field quantities (1)-(10).

APPENDIX 11

The Schwinger functions are derived from the conformal
mapping between a parallel-plate waveguide and a system
containing an iris. Such a mapping is of the general form

coshW=a, + a,coshT.

For the symmetrical case in question, the above mapping
restricted to the x axis is

2ax
cos — =a; + a,cos 0 (A2)
a
such that
x=0—-6=0
w
Xx=o - 0=m.
Thus
, W A3
oy = cos* —— (A3a)
L, TW
o =sin’ ——. (A3b)

We then find that the required singularity at x=w /2 is
found in the term d6/dx linking functions of § to func-
tions of x. Furthermore, the mapping now allows us to
analytically determine certain infinite sums.

In the @ domain, we chose the basis set { f,,}, where

2
— cosmé, m>0

T
1

=—, =0.
- m

This basis may be linked to the set (¢,,,) in the x domain

fn(0) =

(A4)
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via the coefficients P, such that

mn?’

() = éopmnfm(e>. (AS)

It is clear from (6a), (A4), and (A2) that the first few
coefficients are obtained as

T 2

Fo=y g tu=y o
T W

P, = ;sm 2a

By considering Chebyshev polynomials, we can derive a
recursive formula for generating further coefficients. Since

,TW
cos* —
2a

2nm 27
cosTx=T,, cos —x =T, (o, +aycos8) (A6)

using the recursive formula
T.(Z)=2ZT,_(Z)- T,-2(Z)

with the trigonometric identity

(A7)

1
cosfcosmb = 5[cos(m —1)6 +cos(m +1)6]

equation (A7) becomes

n
Y. P! cospl
m=0

n-2

- 12

a—ycosmf— Y P; . cosm
m=0

n—1
=2a; ) P,
m=10

n-—-2
+a, ), P, ,_,cosmb

m=-1

+a, ), P, ,_jcosml (A8)
m=1

where P/, are the coefficients linking the unnormalized
sets

2nw
{cos -a—x} and {cosmb}.

Hence
Pr,=2a\P 1~ Pyt P
+ a281,mP0,,n—1 + aZPr:a—l,n—l (A9)
5, = {O, m#1
g 1, m=1

since, from (A2), (A3a), and (A3b), we have

Pl +cos? —

i cost — T

o 2a 2a

and the coefficients P/, can be generated as required. The
coefficients P, are obtained directly from P, by apply-
ing the normalization

p 3, /'n'P/
mn "~ 8m a ™

W

’— /I — i
Pi=1 P{, = sin

(A10)
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where
8,=2, =0
8,=1, n>0
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